x^2+62x+672=0

Simple and best practice solution for x^2+62x+672=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+62x+672=0 equation:



x^2+62x+672=0
a = 1; b = 62; c = +672;
Δ = b2-4ac
Δ = 622-4·1·672
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1156}=34$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(62)-34}{2*1}=\frac{-96}{2} =-48 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(62)+34}{2*1}=\frac{-28}{2} =-14 $

See similar equations:

| b—8+93=98 | | 7m+21=56 | | N(5-1)(3-2)=x | | 12x-14(x-1)=-6(2x+3)+9x | | -0,04x2+1.2x-9=0 | | 4x+4=-1x+9 | | 12x-14(x-1)=6(2x+3)+9x | | 2y+2/5=7/10 | | 6(x-8)=-2(x+15) | | 0.04(y−3)+0.08y=0.20y−0.5 | | (3x-3)+2x+13=180 | | 48=4(j-73) | | 9x-15=26 | | 16-8x+4(x-6)=-(2x-3)-x+1+6 | | 7(q+2)=91 | | 7(0.75-x)=2.80 | | -(2x+4)=(3x+5) | | ‐3x=15 | | -(2x+4)=(3x+5 | | 26+9h=89 | | 15x/19= | | 8(m-86)=80 | | 17+9z=80 | | X3+8=x | | X5-4=x | | X=x5-4 | | 136/100x+280/100=40/100x | | 2x+27+2x-11=80 | | 4x+3-(18-2x)=2x+5 | | 2.25t+5=13.5t+14* | | 14−2u=−12 | | 19+3x=100 |

Equations solver categories